Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1659207.v1

ABSTRACT

This paper is concerned with nonlinear modeling and analysis of the COVID-19 pandemic. We are especially interested in two current topics: effect of vaccination and the universally observed oscillations in infections. We use a nonlinear Susceptible, Infected, & Immune model incorporating a dynamic transmission rate and vaccination policy. The US data provides a starting point for analyzing stability, bifurcations and dynamics in general. Further parametric analysis reveals a saddle-node bifurcation under imperfect vaccination leading to the occurrence of sustained epidemic equilibria. This work points to the tremendous value of systematic nonlinear dynamic analysis in pandemic modeling and demonstrates the dramatic influence of vaccination, and frequency, phase, and amplitude of transmission rate on persistent dynamic behavior of the disease.


Subject(s)
COVID-19
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2006.09530v2

ABSTRACT

This paper is concerned with nonlinear modeling and analysis of the COVID-19 pandemic currently ravaging the planet. There are two objectives: to arrive at an appropriate model that captures the collected data faithfully, and to use that as a basis to explore the nonlinear behavior. We use a nonlinear SEIR (Susceptible, Exposed, Infectious & Removed) transmission model with added behavioral and government policy dynamics. We develop a genetic algorithm technique to identify key model parameters employing COVID19 data from South Korea. Stability, bifurcations and dynamic behavior are analyzed. Parametric analysis reveals conditions for sustained epidemic equilibria to occur. This work points to the value of nonlinear dynamic analysis in pandemic modeling and demonstrates the dramatic influence of social and government behavior on disease dynamics.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL